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ThisPaperpresents the feasibility of estimating themass of an asteroidby tracking anumber of probes ejected from

a host spacecraft during a flyby. The probes are designed to fly by at a much closer distance to the asteroid than the

host spacecraft, which lowers the risk of endangering the overallmission. Themotion of these probes is perturbed due

to the target asteroid’s mass, and by tracking the probes from the host spacecraft, the change in relative separation

between the probes, which is directly proportional to the asteroid’s mass, can be measured with high precision. The

probes are small reflective spheres that are tracked by an imager mounted on the spacecraft; however, the addition

of radio transceivers inside the probes can greatly enhance themass-recovery performance. A hypotheticalmission to

a main-belt asteroid with the physical characteristics of (101955) Bennu is used as a reference, and an extensive

covariance analysis is performed to determine the recoverable mass accuracy under various conditions. The result

shows that, under realistic assumptions, the mass of a Bennu-like asteroid can be recoveredwith a 1σ accuracy better
than 20% from optical tracking. In case radio transceivers are considered, the recovered asteroid mass accuracy

reduces to better than 5%.

Nomenclature

A = Jacobian of state update function
B = process noise mapping matrix
b = information vector
C = rotation matrix of spacecraft
CRP;jk = radiation pressure constant for k acting on j,m3∕s2
F = state update function
G = measurement function
H = Jacobian of measurement function
K = matrix of intrinsic camera parameters
N = number of probes
nj = unmodeled acceleration for j, m∕s2
P = covariance matrix
Pw = noise covariance matrix
R = square root information matrix
rj, _rj, �rj = position, velocity, and acceleration of j relative to

solar systembarycenter,m,m∕s, andm∕s2, respec-
tively

rjk, _rjk, �rjk = position, velocity, and acceleration of j relative to
k, m, m∕s, and m∕s2, respectively

TH = orthogonal Householder transformation matrix
t0, te, t, tl = initial, ejection, variable, and specific time, s
uj, vj = normalized camera coordinates of j
u 0
j, v

0
j, wj = camera coordinates of j

V = square root measurement covariance
W = measurement covariance matrix
X = true state vector

X� = reference state vector
Xj = state subvector for j
Y = measurement vector
Zj = measurement subvector for j
βs = ecliptic latitude of spacecraft, rad
Δti = probe oscillator phase offset, s

Δ_ti = probe oscillator frequency offset

δX = state deviation vector
δY = measurement deviation vector
ϵ = error term vector
θ = probe ejection angle, rad
λs = ecliptic longitude of spacecraft, rad
μk = gravitational parameter of k
ρs, _ρs = range and Doppler rate between tracking station

and spacecraft, m and m∕s, respectively
ρi, _ρi = range and Doppler rate between spacecraft and

probe, m and m∕s, respectively
ϱij = range between probe i and probe j, m∕s
σss = steady-state stochastic accelerations, m∕s2
τ = noise correlation time, s
Φ = state transition matrix
ϕ = probe observation angle, rad
ψs = spacecraft rotation angles, rad

Subscripts

a = asteroid
c = camera
i = individual probe
o = tracking station
p = all probes combined
s = spacecraft
⊙ = sun
� = Earth

I. Introduction

K NOWING the masses of asteroids throughout the solar system
greatly benefits several disciplines such as planetary defense

and planetary science. However, for most of the asteroids in the solar
system, the mass is an unknown quantity and is typically constrained
based on its spectral type. In the few cases where the mass has been
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determined (without the benefit of a close spacecraft flyby or orbital
rendezvous), the recovered accuracy is typically poor, mainly due to
large uncertainties in the input variables that enabled the estimate.
The size of an asteroid can relatively easily be estimated based on

its brightness and knowing its approximate reflectivity, which can be
determined from its spectral class [1]. The spectral class also deter-
mines the approximate density, and hence its mass can be estimated.
However, the size estimate is not particularly precise, and thismethod
therefore generally leads to high mass uncertainties [2].
The value can be improved by observing disturbances to the orbits

of other objects in the solar system and then performing extensive
calculations [3,4] to extract the contributions caused by the asteroid’s
gravity. In these calculations, it is commonly assumed that the orbital
parameters of the perturbing asteroid are known quantities; however,
because the objects under consideration are gravitationally coupled,
this approximation will in some cases lead to significant errors in the
mass estimate andmust therefore be accounted for [5]. In general, this
approach requires either a relatively heavy asteroid or close encoun-
ters with the other objects in order to produce orbital deflections that
can be successfully measured and decoupled from other the disturb-
ances. Mass precision on the scale of 5% is achievable with this
method, but it is limited to the asteroids which satisfy the limiting
conditions of being sufficiently large and in an appropriate orbital
configurations with all main belt asteroids processed with this
method having masses in excess of 1014 kg [6].
If better precision is required, a solution is to have a spacecraft

rendezvous with the asteroid and either fly by or orbit around it. With
the orbital approach, the mass can be determined with an uncertainty
of less than 1% [7], whereas the precision achievable during a flyby
depends greatly on the specifics of the object as well as the flyby and
tracking geometry. For small asteroids, the spacecraft will have to
pass perilously close by the asteroid in order to achieve a significant
deflection that can be uncoupled fromother disturbances such as solar
radiation pressure. Furthermore, before the encounter, the position of
the asteroid will generally only be determined to within a few kilo-
meters, which further complicates the recovery of mass from a flyby.
However, this issue can be alleviated by tracking the asteroid from the
spacecraft during the approach phase. It is also possible to improve
results by havingmultiple spacecraft flying in formation either during
flybys [8,9] or in orbit around the target [10].
This Paper presents a possible solution to improve the mass

recovery from a flyby by deploying a series of probes which can
provide the following benefits:
1) Such probes can bemade to approach the asteroid at much closer

distanceswithout endangering the spacecraft, thus providing increased
deflection.
2) The relatively short distances between the probes and the space-

craft will allow for more precise observations compared to the Earth-
based tracking of the spacecraft.
3) By having the probes approach the asteroid at different distances

and/or from different directions, the differential deflection of their
trajectories can be used to pinpoint the mass of the asteroid, even
though its position is not well determined.
4) If the probes are constructed with adequate uniformity, it can

reasonably be assumed that any external disturbanceswill affect them
equally, thus allowing for such disturbances to be decoupled from the
gravity of the asteroid. Solar radiation pressure will, for example,
result in an acceleration term that is approximately equal for all
probes, whereas asteroid gravity will affect them differently. By
looking at the difference between the probes, solar radiation pressure
will thus disappear while gravity is retained.
The probes can, in principle, be as simple as small inert spheres

coated in a highly reflective material that allows them to be imaged
from large distances for angles-only camera measurements.
The Johns Hopkins University Applied Physics Laboratory has

proposed a concept, calledOpGrav [11], that uses the described probe
based measurement method, and has successfully demonstrated
probe deployment with the Small Body In-Situ Multi-Probe Mass
Estimation Experiment project [12]. The work has mainly been
focused on image-based measurements using cameras from previous
missions as a baseline for their design. The disadvantage of using only

onboard imaging is that the uncertainty associated with measuring
the deflection of probe trajectories caused by the asteroid is directly
proportional to the distance between the spacecraft and the probes.
This limits the attainable mass estimation accuracy, especially for
large flyby distances.
The use of deployable probes for spacecraft in orbit around a target

body has also been suggested in the literature [13,14]. Such configu-
rations can potentially be used to estimate not only the bulk density of
the target but also spherical harmonic coefficients describing the
gravitational field, as has been demonstrated using naturally occur-
ring probes around asteroid (101955) Bennu [15].
This Paper examines how the OpGrav concept might be improved

by extending the probe design to include radio transceivers. Three
measurement methods are considered: one using only imaging, one
usingDopplermeasurements to estimate radial probe speed relative to
the spacecraft, and one using time of flight (i.e., ranging) to measure
the distances between the probes and the spacecraft as well as the
distances between the probes themselves.
In Sec. II, a reference scenario will be introduced that is used to

characterize the potential performance of the measurement principle.
Sections III and IV describe the theory used for modeling the dynam-
ics of the reference scenario and for evaluating performance. Results
of the analysis are presented in Sec. V, and some practical consid-
erations are discussed in Sec. VI.

II. Reference Mission

To evaluate the performance of the mass estimation methods, a
reference mission has been constructed where, as illustrated in Fig. 1,
a spacecraft is launched into a elliptical orbit around the sun and
encounters a main belt asteroid at aphelion. The initial position of the
asteroid and the exact parameters of the spacecraft orbit are selected
such that they result in a minimum flyby distance equal to 50 km.
Before the encounter, the spacecraft ejects a number of probes at
speeds and ejection directions selected such that, at the encounter, the
probes forma circle around the asteroidwith its normal vector parallel
to the asteroid’s direction of travel. Specifics of the orbit are as
follows: the spacecraft is in an elliptical 1 AU by 2.5 AU orbit; the
asteroid is in a 2.5 AU orbit; the flyby distance is equal to 50 km; the
flyby speed is 4.6 km/s; and the approach distance is 1 km. All orbits
are considered to be coplanar and aligned with the ecliptic, with the
Earth’s and the asteroid’s orbits being circular.
Approach and flyby distance are defined as the minimum distance

to the asteroid from the probes and the spacecraft, respectively. The
asteroid is modeled after (101955) Bennu, and the physical parame-
ters of it and those of the other involved objects are shown in Table 1
[16,17].GM is the standard gravitational parameter. Note that the first
value given for the probe information represents the OpGrav and
OpRange scenarios, whereas the second value represents theOpDop-
pler scenario. All objects are assumed to be spherical.

Asteroid Initial Position

Encounter x

y

Spacecraft/Earth
Initial Position

Sun

As
te

ro
id

 O
rb

it Spacecraft OrbitEarth
 Orbit

Fig. 1 The orbital setup of the reference mission in sun-centric
coordinates.
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Three scenarios are considered: the OpGravmethod, the OpRange

method, and the OpDoppler method.

In the OpGrav method, a total of three probes are ejected and

tracked as they move toward the approach points. The concept is

illustrated in Fig. 2. A camera mounted on the spacecraft is used to

track the angular motion of the probes as well as that of the asteroid.

The OpRange method, depicted in Fig. 3, uses a similar mission

profile, but with the addition of radio transceivers being built into the

probes. These beacons each transmit a radio signal at specified

intervals, which is then picked up by the other probes as well as by

the spacecraft. By determining the arrival times of these signals, the

probe–spacecraft distances as well as the probe–probe distances can

be estimated. It is assumed that physical constraints will limit arrival

time estimation precision to a few nanoseconds using one-way radio

links and that, in addition, differences in oscillator hardwarewill cause

the range estimates to be offset from the true value as well as to drift

over time. These issues are mitigated by incorporating correcting

terms in the state vector during data processing. Achieving this level

of precisionwith theprobe form factormight not be a trivialmatter and

is discussed further in Sec. VI.

The OpDoppler method is based on the GRAIL and GRACE

missions, which use ultrastable oscillators and two-way radio links

to achieve highly accurate radial velocitymeasurements between two

satellites [18,19]. This scenario, as shown in Fig. 4, uses a similar

concept, combined with optical tracking, to track the trajectory of a

single probe as it encounters the asteroid. This approach requires

significantlymore complex hardware compared to the othermethods,

and it was therefore decided to reduce the number of probes to 1, as

this was deemed to represent a more achievable mission scenario.

Regardless, this method will be challenging to implement in practice
as will be discussed in Sec. VI.
Common for all scenarios is that the spacecraft is tracked from an

Earth-based tracking station using X-band radio. Measurements are
performed once per hour with the camera pointed toward the probes
formost of the encounter; however, fromone day before until one day
after the time of closest approach, the camera is instead pointed
toward the asteroid. This is done to allow for science operations as
well as to improve the positional estimate of the asteroid. In addition,
during the closest approach (jtj < 1 h), the measurement rate is
increased to once per minute in order to better capture the dynamics
of the encounter. Normal observations then continue for 7 days after
the closest approach.
The camera measurements are based on the Advanced Pointing

Imaging Camera (APIC) [20], which is a high-resolution imaging
system developed at the Jet Propulsion Laboratory consisting of two
cameras (one narrow angle and one wide angle) mounted on a two
degree-of-freedom (DOF) actuation platform. Because the relative
orientation of the two cameras is known with a high precision, the
platform is capable of providing accurate pointing information by
simultaneously having one camera observe a target, while the other
captures a star field. Furthermore, the two DOF actuation makes the
system well suited for imaging targets moving at high relative speeds
as it reduces the need for reorienting the entire spacecraft, thusmaking
it ideal for this type of mission.

III. Covariance Analysis

To estimate the attainable observation uncertainty of the mass
determination method, a square root information batch processor
[21] has been implemented. In general, the approach estimates the
values of an initial state vector given a series of measurements by
linearizing the system dynamics around a reference trajectory and
then iteratively adjusting the reference until the systemconverges. The
covariance matrix associated with the state vector is simultaneously
estimated and canbeused to determine theprecision of the statevector
estimate [22–26].

A. Algorithm Overview

The algorithm processes an observation at time tl by first integrat-
ing a reference trajectory from tl−1 to tl and then calculating the
Jacobian H of the measurement function with respect to the state
vector, evaluated on the reference trajectory:

H�tl� �
�
∂G�X�t�; t�

∂X�t�
�
X��tl�

(1)

where G�X�t�; t� is the measurement function and X��tl� is the
calculated reference state. This is then related to the initial state at
t0, rather than the current state, by means of

H�t0jtl� � H�tl�Φ�tl; t0� (2)

withΦ�tl; t0� being the state transition matrix (STM) at time tl. The
STM is determined simultaneously with the reference state through
numerical integration and is governed by the differential equation

Table 1 Object parameters of the main spacecraft and the probes

Object parameter Asteroid Spacecraft Probe

Diameter 490 m [7] 1 m 15 cm, 50 cm
Mass 7.329 × 1010 kg [16] 500 kg 1 kg, 20 kg

GM 4.892 m3∕s2 [16] 3.3 × 10−8 m3∕s2 — —

�J2 −0.017511 [17] —— — —

Albedo 0.043 [7] 0.5 0.85
Count 1 1 3,1

x
y

z

Fig. 2 Illustration of the OpGrav method; te is the time of ejection, and
t � 0 is the time of closest approach.

x
y

z

Fig. 3 Illustration of theOpRangemethod; te is the time of ejection, and
t � 0 is the time of closest approach.

Fig. 4 Illustration of the OpDoppler method; te is the time of ejection,
and t � 0 is the time of closest approach.

446 CHRISTENSEN, PARK, AND BELL

D
ow

nl
oa

de
d 

by
 "

A
ri

zo
na

 S
ta

te
 U

ni
ve

rs
ity

, T
em

pe
" 

on
 A

pr
il 

23
, 2

02
4 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.A
34

83
0 



Φ�t0; t0� � I; _Φ�t; t0� � A�t�Φ�t; t0� (3)

where

A�t� �
�
∂F�X�t�; t�

∂X�t�
�
X��t�

(4)

is the Jacobian of the state update function F�X�t�; t� with respect

to the state vector, evaluated on the reference state. To improve

numerical performance, the algorithm operates on the square root
information matrix R�t�, defined by

R⊺�t�R�t� � Λ�t� � P−1�t� (5)

rather than the covariance matrix P directly. Similarly, instead of the
state deviation vector δX�t�, the information vector

b�t� � R�t�δX�t� (6)

is used. These quantities are updated using the modified measure-

ment Jacobian according to

TH

"
R�t0jt0; : : : ; tl−1� b�t0jt0; : : : ; tl−1�
V−1�tl�H�t0jtl� V−1�tl�δYl

#

�
"
R�t0jt0; : : : ; tl� b�t0jt0; : : : ; tl�

0 ϵl

#
(7)

where TH is a Householder transformation that produces an upper

triangular matrix; δYl � Y�tl� − G�X�tl�; tl� is the difference

between the actual observations and the expected observations based
on the reference trajectory; ϵi is an error term; andV�tl� is defined by

V�tl�V⊺�tl� � W�tl� (8)

withW�tl� being the measurement covariance matrix.
This process is repeated for all measurements 1; : : : ;M, after

which the state deviation vector incorporating all the available data

δX�t0jt0; : : : ; tM� is calculated and used to update the reference

trajectory according to

X��t0� � X��t0� � δX�t0jt0; : : : ; tM� (9)

The process is then repeated until X��t0� converges to a constant
value. Finally, P�t0jt0; : : : ; tM� is calculated, thus describing the

covariance associated with final state estimate [27].

B. Stochastic Effects

The effects of forces not included in the acceleration model can

be investigated by adding time correlated stochastic process noise to

the system. Because the batch processing algorithm only determines
the state at t0, it implicitly assumes that any such disturbances

are constant, which is not a realistic assumption. To account for this,

the processing can be split up into smaller batches, each representing

a time span shorter than the correlation time of the process noise,

and then the initial state for each batch can be estimated [27]. This
effectively models the stochastic acceleration as being a piecewise
constant function, which better represents the disturbances. However,
thiswill likely require smoothing toproduce consistent results because
the different batches are treated individually. A similar outcome can
be achieved while still only estimating the state at t0 by extending the
state vector to include bias terms representing the unmodeled accel-
eration for each of the time spans represented by the batches and then
updating the state transitionmatrix to point to the appropriate bias term
for any given time. By doing it this way, no smoothing is needed as
information about the entire trajectory is available to the estimator.
Because unmodeled forces affect the square root information

matrix in a way that the described batch processing algorithm does
not account for, the state uncertaintywill generally be underestimated
if such effects are added. To address this issue, the algorithmmust be
modified to determine R�tljt0; : : : ; tl� rather than R�t0jt0; : : : ; tl�.
For each measurement l, this can be achieved by integrating

_R�t� � −R�t�A�t� − 1

2
R�t�BPωBR

⊺�t�R�t� (10)

from tl−1 to tl with initial condition R�tl−1jt0; : : : ; tl−1� resulting in
R�tljt0; : : : ; tl−1� and then performing the measurement update
according to

TH

�
R�tljt0; : : : ; tl−1� b�tljt0; : : : ; tl−1�
V−1�tl�H�tl� V−1�tl�δYl

�

�
�
R�tljt0; : : : ; tl� b�tljt0; : : : ; tl�

0 ϵi

�
(11)

rather than according to Eq. (7). Here, B is a matrix that describes
how the process noise maps to the system, and

Pw � 2τσ2ssI (12)

is a matrix describing the characteristics of the noise, with τ being the
correlation time and σss being its standard deviation [28].

IV. State Space Model

For the sake of simplicity, the spacecraft is considered to only be
affected by solar gravity, solar radiation pressure, and asteroid gravity,
whereas the asteroid is only affected by solar gravity. The forces
considered as acting on the probes are solar gravity, solar radiation
pressure, asteroid gravity, asteroid J2 disturbance, asteroid radiation
pressure, spacecraft gravity, and spacecraft radiation pressure. The
effects these forces have on the trajectory of the probes are illustrated
in Table 2. The probe orbits are clearly dominated by solar effects and
the asteroid gravity term, as would be expected, whereas effects of
asteroid radiation pressure and the J2 term are insignificant in com-
parison. Both spacecraft gravity and radiation pressure cause signifi-
cant displacements; however, because these forces only affect the
probes to a measurable degree immediately after probe ejection, the
effects are indistinguishable from errors in ejection speed. Because of
this, only solar gravity, solar radiation pressure, and asteroid gravity
are included in the state space model used for estimating asteroid
mass; however, all the forces of the table are used when generating
ground truth trajectories.

Table 2 Effect of forces considered for the probes

Cause Peak acceleration, km∕s2 Velocity change, km∕s Displacement, km

Solar gravity 9.5 × 10−7 1.7 1.5 × 106

Solar radiation pressure 1.8 × 10−12 3.2 × 10−5 2.9 × 101

Asteroid gravity 4.9 × 10−9 2.1 × 10−9 1.3 × 10−3

Spacecraft gravity 3.3 × 10−11 5.1 × 10−10 9.1 × 10−4

Spacecraft radiation pressure 6.4 × 10−12 9.7 × 10−11 1.2 × 10−4

Asteroid J2 7.7 × 10−12 2.4 × 10−12 1.4 × 10−6

Asteroid radiation pressure 1.2 × 10−14 5.3 × 10−15 3.2 × 10−9
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A. Governing Equations of Motion

The acceleration caused by an object k on an object j is modeled as

�rjk � −μk
rjk
jrjkj3

� aRPjk (13)

where μk is the gravitational parameter of object k, rjk is the position
vector of object j relative to object k, and aRPjk is the acceleration

caused by radiation pressure. Because all objects are considered to be
spheres with uniform reflectivity, this can be rewritten as

�rjk � �CRP;jk − μk�
rjk
jrjkj3

(14)

where CRP;jk is a constant that depends on the specifics of the

object [29].
The modeled acceleration of the objects under consideration can

now be written as

�ra � −μ⊙
ra
jraj3

(15)

for the asteroid,

�rs � �CRP;s⊙ − μ⊙�
rs⊙
jrs⊙j3

− μa
rsa
jrsaj3

� ns (16)

for the spacecraft, and

�ri � �CRP;i⊙ − μ⊙�
ri⊙
jri⊙j3

− μa
ria
jriaj3

� ni (17)

for the ith probe; μ⊙ and μa are the gravitational parameters of,
respectively, the sun and the asteroid, and ns and ni are bias terms
corresponding to unmodeled acceleration. It is assumed that ni is
constant in time and equal for all probes, i.e., ni � np, on account of

the probes being spherical and relatively close to each other.

B. State Vector

The state vector for the specific scenario consists of subvectors
describing asteroid state, spacecraft state, probe states, radiation
pressure constants, and bias terms:

X��X⊺
a X⊺

s X⊺
1 · · · X⊺

N CRP;s⊙ CRP;p⊙ ns np 	⊺ (18)

The asteroid state is given by

Xa � �r⊺a _r⊺a μa 	⊺ (19)

i.e., position, velocity, and gravitational parameter. For the space-
craft, position, velocity, and rotation angles are stored:

Xs � �r⊺s _r⊺s ψ⊺
s 	⊺ (20)

Finally, for each probe, position and velocity are stored in addition
to the coefficients for a linear model describing oscillator offset:

Xi � �r⊺i _r⊺i Δ_ti Δti 	⊺ (21)

Note thatΔ_ti andΔti are only necessary for theOpRange scenario.
This leads to the state vector having a total of 8N � 24 elements with
N being the number of probes.

C. Measurement Vector

The measurement vector is similarly split into subvectors for the
asteroid, the spacecraft, and the probes:

Y��
Z⊺
aZ

⊺
sZ

⊺
1 ···Z

⊺
N

�⊺ (22)

The asteroid measurements are the image coordinates of its center
measured from the spacecraft camera:

Za � � ua va 	⊺ (23)

The spacecraft is observed from the tracking station with measure-
ments consisting of two-way radar distance, ecliptic longitude and
latitude measured using very long baseline interferometry (VLBI),
and Doppler range rate. Also measured is the orientation of the
spacecraft using the APIC platform. This leads to the following
subvector:

Zs � �ρs λs βs _ρs ψ⊺
s 	⊺ (24)

Finally, for the probes, the measurement vector depends on the
scenario under consideration. For OpGrav, camera coordinates and
camera based ranging are used; for OpDoppler, camera coordinates
and Doppler rate are used; and for OpRange, camera coordinates,
radio based range, and interprobe range are used:

�OpGrav�:Zi � �ui vi ρi 	⊺;
�OpDoppler�:Zi � �ui vi _ρi 	⊺;
�OpRange�:Zi � �ui vi ϱi ϱi1 : : : ϱiN 	⊺ (25)

The resulting combined measurement vectors consists of 3N � 9,
3N � 9, and N�N � 2� � 9 elements, respectively.

D. Measurement Model

The Earth-based spacecraft rangemeasurement is calculated based
on the state vector according to

ρs � jrs − r� − ro�j � jrsoj (26)

where r� is the position of the Earth and ro� is the location of the
tracking station relative to the Earth [22]. Similarly, the Doppler rate
is given by

_ρs �
d

dt
jrs − r� − ro�j �

rso ⋅ _rso
jrsoj

(27)

and the VLBI azimuth and altitude are equal to

λs � tan−1
rso;x
rso;y

(28)

and

βs � tan−1
rso;z������������������������

r2so;x � r2so;y

q (29)

respectively.
For the probes, camera coordinates are given by

�u 0
i v 0

i wi 	⊺ �KC⊺ric; ui �
u 0
i

wi

; vi �
v 0
i

wi

(30)

with

ρi � jri − rs − rcsj � jricj (31)

where

rc �−C�0 0 1 	⊺ (32)

is the location of the camera relative to spacecraft center of mass.K is
the matrix of intrinsic camera parameters, and C is a rotation matrix
that transforms from the narrow angle camera to the global frame of
reference. The probe range and Doppler rate are calculated similarly
to that of the spacecraft but using the spacecraft as point of reference
instead of the tracking station. Interprobe distances are simply calcu-
lated as
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ϱij � jri − rjj � �t�_δti − _δtj� � δti − δtj�c (33)

where c is the speed of light.
For the asteroid, camera coordinates are calculated in the same

way as for the probes. Table 3 shows the uncertainties associatedwith
each type of measurement. Note that the Earth-based tracking values
correspond to using 60 s samples, whereas the probe Doppler value
assumes 5 s samples [30]. Further note that the APIC system has an
instantaneous field of view (IFOV) of 18 μrad∕pixel [20].

V. Results

To characterize the potentially attainable performance of the mass
estimationmethods, in the following, the covariance analysismethod
has been performed with the reference trajectory set to the true value
and without any noise added to the measurements or stochastic
accelerations affecting the dynamics. This does not represent realistic
data, but it is useful for analyzing the effects of varying different
design parameters. In Sec. V.D, the impact of these simplifications
will be evaluated.
Figure 5 shows the evolution of the standard deviation σμa of the

asteroid mass estimate using the reference scenario described in
Sec. II. The solid line represents OpGrav method, the dashed line
represents the OpDoppler method, and the dotted line represents the
OpRange method.
The initial uncertainties have been set according to Table 4.

Because of the large distances and relative velocities involved in the
encounter, σμa remains constant until just shortly before the closest
approach as the deflection of the probe trajectories is negligible.
During the encounter at t � 0, the asteroid changes the velocities
of the probes by small amounts, and their paths start to diverge. The
OpDoppler method quickly reaches its final precision because it
measures the change in velocity directly, whereas the OpGrav and
OpRange estimates gradually becomes more precise as the deviations
from the undisturbed trajectories become more significant. Because

the spacecraft is focused on observing the asteroid at the closest
approach, the OpGrav scenario exhibits a delayed response with the
reduction in mass uncertainty only becoming evident after t � 1 day
when the camera is redirected toward the probes.
After a period of 7 days, the probes are on average at a distance of

85 km from the spacecraft for the OpDoppler andOpRange cases and
109 km for the OpGrav case, and themagnitude of the deviation from
the no-asteroid trajectories is in all instances equal to 1.3 m. The
distance difference between the methods is caused by a different
ejection direction being used for OpGrav, which causes the probes to
travel farther before reaching the asteroid (see the next section). Even
though the deflections are somewhat small compared to the distances,
the estimation method is able to determine the mass of the asteroid
with a 1σ precision of 3.7% for OpRange, 0.1% for OpDoppler, and
11.1% for OpGrav. Clearly, the addition of radio beacons inside the
probes has a great impact on the performance of the measurement
method, especially when using Doppler measurements.
To gauge the validity of the covariance analysis results, a Monte

Carlo process has been performed where the state estimation algo-
rithm was used to process 200 simulated datasets and the standard
deviation of the resulting state estimates were calculated to equal
10.8, 4.2, and 0.2%, respectively, forOpGrav,OpRange, andOpDop-
pler with corresponding mean errors of 1.2, 0.4, and 0.1%. Good
agreement with the results of the covariance analysis is observed,
with the differences in precision being attributable to the relatively
small sample size.

A. Probe Parameters

1. Effects of Ejection Parameters

Figure 6a illustrates the encounter as seen from the spacecraft and
defines the probe ejection angle θ relative to the direction of travel.
Changing this angle has a significant impact on the final mass
uncertainty as evident from Fig. 7, especially for the OpGrav and
OpDoppler cases. Note that the crosses indicate the values used in the
nominal case. With reference to Figs. 6a and 6b, a probe is ejected at
an angle θ relative to the spacecraft velocity vector, and in the absence
of the asteroid, the probe follows the dashed line. Because of solar
radiation pressure, the trajectory bends away from the sun instead of
following a straight line. With the asteroid present, the probe follows
the solid line, and the final position is shifted by the vectorΔx relative
to the no-asteroid case. Because of the high relative velocity of the
asteroid, jΔxj only varies a small amount depending on ejection angle
and is always located in thex-z plane. Thismeans that for θ � 90 deg
the displacement will bemostly radial (maximum jΔxrj), whereas for

Fig. 5 Evolution of the standard deviation of the asteroidmass estimate
as a function of time relative to the closest approach.

Table 3 Measurement uncertainties (1σ)

Earth-based tracking APIC Radio

Spacecraft range: 1 m [22] Asteroid direction: 0.5 pixel Probe range: 1 m

Spacecraft Doppler: 0.1 mm∕s [22] Probe direction: 0.5 pixel Probe Doppler: 0.03 μm∕s
Spacecraft direction 1 nrad [22] Spacecraft attitude: 2 arcsec [20] ——

Table 4 A priori standard deviation

Asteroid Spacecraft Probe

Position: 10 km Position: 100 m — —

Velocity: 1 cm∕s Velocity: 1 cm∕s Ejection speed: 1 mm∕s
GM: 50 m3∕s2 ≈ 1000% Attitude: 2 arcsec Ejection angle: 0.5 deg

a) b)

Fig. 6 Geometry of the asteroid encounter: a) the encounter in space-
craft-centric coordinates and b) a simplified view of the corresponding
observation geometry.
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θ � 0 deg and θ � 180 deg, the displacement will be mostly tan-
gential (maximum jΔxtj) as seen from the spacecraft. In addition to
this, for angles close to 0 and 180 deg, the x component of the initial
probe velocities will be small, resulting in longer durations between
probe ejection and closest approach compared to angles close to
90 deg, which in turn leads to the spacecraft being farther away from
the probes at t � 0. Note that the number of observations has been
kept constant regardless of ejection angle.
In the OpGrav case, the tangential displacement can be better

determined than the radial displacement, hence the mass uncertainty
increases for angles close to 90 deg. In addition to this, the precision
with which the tangential displacement can be determined decreases
with range, and the mass uncertainty therefore also increases as the
ejection angle approaches 0 and 180 deg.
Contrarily, the spacecraft–probe distances measured in the

OpRange method contain the most information about the asteroid
mass when the displacement is radial, and it would therefore be
expected that the best precision should be obtained at θ � 90 deg.
However, the probe–probe distance measurements provide the same
knowledge regardless of orientation, and the angular dependence of
theOpRangemethod is thereforemostly constant. The slight improve-
ment that is observed near the extreme angles can be explained by
the OpRange method providing better results with increased flyby
distance (see Sec. V.B.1).
The shape of the OpDoppler plot appears to be caused by varia-

tions in the uncertainty of the asteroid and spacecraft states related to
the tracking geometry. Note that this effect is somewhat exaggerated
in the plot on account of the logarithmic y-axis scaling.
The results in this section only deal with ejection directions lying

within the encounter plane. It is quite possible that better performance
can be achieved if out-of-plane directions are considered; however,
this will require further analysis.

2. Effect of Probe Mass

The effect of changing themass of the probes is illustrated in Fig. 8.
For low probe masses, the acceleration caused by solar radiation
pressure will be large and will therefore cause the observation geom-
etry to change significantly from the reference scenario. Specifically,
the angle ϕ (Fig. 6b) will move toward 90 deg, and the range to the
probes will increase. This, evidently, leads to a decrease in mass
uncertainty, especially in the OpGrav case. Conversely, for larger
probe masses, the effects of the solar radiation pressure will be less

significant, and the mass uncertainty approaches a constant value,

dictated by the other design parameters.

3. Effect of Probe Count

Changing the number of ejected probes results in the mass uncer-

tainty behavior shown in Fig. 9. With just a single probe, no mean-

ingful mass estimation can be performed using OpGrav or OpRange

because the asteroid’s position is not well determined and these

methods are therefore not able to decouple asteroid mass and probe

distance. This is not an issue for the OpDoppler approach, which

exhibits good performance using even just a single probe. Common

for all, bettermass estimates are obtainedwhenmore probes are used,

as would be expected.

B. Mission Parameters

1. Effect of Orbit Design

Figure 10 displays the effect of varying the flyby distance, i.e., the

minimum distance between the spacecraft and the asteroid. For the

OpGrav and OpDoppler methods, a linear relationship is observed

between flyby distance and mass uncertainty, as would be expected.

OpRange, on the other hand, actually shows slightly improved pre-

cision at longer ranges. Considering that the precision of the radio-

basedmeasurements ismodeled as being constant regardless of range,

it would be expected that the mass uncertainty should be similarly

constant. The improvement in mass estimation must therefore be

attributed to changes in the orbital configuration. The red sections

in the left part of the figure represents configurations where at least

one probewas outside the field of view of the camera for a significant

part of its trajectory and hence explain the associated increase inmass

uncertainty.

In Fig. 11, the effect of changing the flyby speed of the spacecraft

is shown, whereas the effect of varying approach distance, i.e., the

minimum distance between the asteroid and the probes, is displayed

in Fig. 12.

ForOpDoppler andOpRange, the asteroidmass uncertainty shows

simple dependence on both flyby speed and approach distance, with

increased approach distance and flyby speed leading to increased

mass uncertainty. This is as expected, considering that these two

parameters directly affect the magnitude of probe displacement. The

0 45 90 135 180
Ejection Angle (degrees)

10-1

100

101

a (
%

)
OpGrav OpDoppler OpRange

Fig. 7 Standard deviation of μa as a function of probe ejection angle.

0 5 10 15 20 25 30
Probe Mass (kg)

10 -1

10 0

10 1

a
 (%

)

OpGrav OpDoppler OpRange

Fig. 8 Standard deviation of μa as a function of probe mass.

0 2 4 6 8 10
Probe Count

10-2

10-1

100

101

102

a (
%

)

OpGrav OpDoppler OpRange

Fig. 9 Standard deviation of μa as a function of the number of ejected
probes.

0 50 100 150 200
Flyby Distance (km)

10-2

10-1

100

101

a (
%

)

OpGrav OpDoppler OpRange

Fig. 10 Standard deviation of μa as a function of flyby distance. The red
parts indicates probes being outside the camera’s field of view.
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OpGrav case shows amore complex relation to the approach distance

caused by probes being outside the field of view of the camera.

2. Effect of Asteroid Properties

Figure 13 shows how the mass estimation uncertainty varies as

a function of asteroid density assuming constant volume and shape.

The estimation uncertainty is observed to be inversely proportional

to asteroid density. The reason for this is that the absolute value of

the estimation accuracy is constant regardless of asteroid mass, thus

leading to the percentile value decreasing with increasing asteroid

mass and hence density. This, however, appears to not be the case

for the OpDopper method, which exhibits precision proportional to

asteroid density and hence produces a constant percentile value. The

blue curve shows the precision obtainable using Doppler tracking of

the spacecraft without launching any probes.

In Fig. 14, the dependence on asteroid diameter, assuming constant

density, is displayed. Note that, in addition to changing the size of

the asteroid, the approach and flyby distances were adjusted to keep

the distances from the surface of the asteroid constant, assuming a

spherical shape. Mass precision is shown to improve continually for

all methods until a diameter of about 3 km is reached, at which point

two of the probes exit the field of view of the camera. From there on,

the OpGrav precision is reduced to that which can be achieved from

tracking the spacecraft alone.

C. Measurement Parameters

Throughout this section, the measurement parameters that are not
being varied use the default uncertainties presented in Table 3.

1. Effect of Earth-Based tracking

Table 5 shows the measurement uncertainties associated with
spacecraft tracking at different frequency bands as well as the value
of σμa obtainedwhen using said bands; σρ is the standard deviation of
radar range, σI is that of the VLBImeasurements, and σ _ρ is that of the

OpDoppler measurements. Underlining indicates the values used in
the nominal configuration. All three tracking systems produce nearly
identical results. Clearly, the choice of tracking system has little
impact on mission performance in the noiseless case.
If the positions of the asteroid and the spacecraft were both

accurately determined, the mass of the asteroid could, in principle,
be known from the absolute deflection of a single probe. However,
because the position of the asteroid is, with an initial uncertainty of
10 km, poorly determined, themeasurement principlemust rely on the
relative deflectionofmultiple probes.As a result, the absolute position
of the spacecraft is not important in the calculations, and a constant σμa
is achieved regardless of tracking system.

2. Effect of Camera Tracking

For the same reasons as for the Earth-based tracking, the absolute
attitude of the spacecraft is unimportant for the mass determination
process, and the mass uncertainty is constant regardless of star
tracking precision. This would be subject to change if the mission
parameters were modified such that the probes were not all contained
in the field of view of the camera, and the spacecraft would have to
reorient itself in order to image eachprobe. In such a case, the pointing
accuracy would be expected to have a significant effect on the mass
precision.
Changing the IFOVof the camera results in Fig. 15, which shows

a linear dependence for σμa in the OpGrav case. This is expected as
decreased IFOV leads to better probe trajectory determination, and
the precision with which the relative positions of the probes is known
completely determines the attainable mass precision.
The dependence on camera tracking precision exhibited by the

OpDoppler method is caused by the decreased asteroid state uncer-
tainty associated with better IFOV values.
Camera-based probe tracking has very little impact on the final

mass uncertainty obtained with the OpDoppler and OpRange meth-
ods; however, these measurements are still needed to ensure proper
convergence of the state estimation.

3. Effect of Radio Transceiver Measurements

Figure 16 shows how changing radio ranging precision affects
system performance. The mass uncertainty increases with increasing
range uncertainty, limited by thevalue set by the availability of camera
measurements. Even though the range precision does not affect the
OpGrav and OpDoppler methods, these are plotted as well for com-
parison. It can be seen that the OpRange method reaches the mass
uncertainty of the OpDoppler and OpGrav methods at range preci-
sions of approximately 0.04 and 10 m, respectively.

5 10 15
Flyby Speed (km/s)

10-2

10-1

100

101

a (
%

)
OpGrav OpDoppler OpRange

Fig. 11 Standard deviation of μa as a function of flyby speed.

0 2 4 6 8 10
Approach Distance (km)

10-2

10-1
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101

102
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OpGrav OpDoppler OpRange

Fig. 12 Standard deviation of μa as a function of probe approach
distance. The red parts indicate probes being outside the camera’s field
of view.

1 2 3 4 5 6
Asteroid Density (g/cm³)
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OpGrav OpDoppler OpRange

Fig. 13 Standard deviation of μa as a function of asteroid density. The
blue line represents pure spacecraft tracking using no probes.
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Fig. 14 Standard deviation of μa as a function of asteroid diameter.

The red parts indicate probes being outside the camera’s field of view.
The blue line represents pure spacecraft tracking using no probes.
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Asimilar result is obtainedwhenvarying theOpDoppler precision,

as illustrated by Fig. 17.However, because only a single probe is used

for the OpDoppler method, the estimation uncertainty is not as well

bounded by the camera measurements and quickly reaches much

higher values. The precision obtained using the OpDoppler method

equals those of the OpRange and OpGrav methods at 10 and

30 μm∕s, respectively.

4. Effect of Observation Cadence

Changing the time between camera and probe rangemeasurements

changes the total number of samples for a given amount of total

observation time for the OpGrav and OpRange methods. And as

can be seen from Fig. 18, the value of σμa is therefore directly related
to the time step, with shorter steps resulting in higher precision, on

account of larger numbers of observations.

The reason why the observation cadence is only varied for some

of the measurement types is that radiometric measurements are

normally performed continuously, whereas the cameramight be used

for different purposes during the mission, which will limit how often

images can be captured. Similarly, probe range measurements would

likely have to be spaced out in time to limit the energy storage

requirements of the probes.

D. Stochastic Effects

The results presented thus far only hold true in the case of having

perfectly modeled system dynamics, which will generally not be the

case in a real-world scenario. The simulations have therefore been

repeatedwith stochastic forces added to the accelerationmodels of the

spacecraft and the probes. For the spacecraft, exponentially correlated

noise with varying noise intensities and a correlation time of 12 h has

been added to the acceleration. For the probes, it is assumed that the

unmodeled accelerations are equal and constant in time, and hence a

random constant vector has been added for each simulation run.

Table 6 shows the results of adding the stochastic forces to the

system. For the OpRange method, the process noise does not seem to

affect the performance of themass estimation by a significant amount

for noise intensities below 10−11 km∕s2.
The OpGrav method is more sensitive to the stochastic acceler-

ations and shows a significant increase inmass uncertainty, but it, too,

levels out to a constant value.

TheOpDopplermethod, on the other hand, shows higher sensitivity

to the noise environment and fails to produce useful results for values

above 10−11 km∕s2. Themain reason for this is thatwhenonly a single

probe is used there is not enough information available to properly

decouple the signal caused by the asteroid’s gravity from that of other

effects. While not explicitly shown here, adding additional probes to

theOpDoppler scenariodramatically increases its noise robustness and

causes it to behave similar to the other methods. Furthermore, because

the largest error contribution is caused by uncertainty in the spacecraft

state, reducing the error associated with the Earth-based tracking also

significantly improves the results. Regardless, the OpDoppler method

is still able to outperform the other methods for noise values of

10−13 km∕s2 and below.
Based on these results, it must be concluded that the OpDoppler

method has the most potential, but it requires careful calibration

Table 5 σμa as a function of tracking system

Tracking system σρ, m σI , nrad σ _ρ, mm∕s [22] OpGrav OpDoppler OpRange

S band 10 5 1 11.1% 0.1% 3.7%
X band 1 1 0.1 11.1% 0.1% 3.7%
K band 0.1 0.1 0.01 11.0% 0.1% 3.7%
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10-1
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101
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)

OpGrav OpDoppler OpRange

Fig. 15 Asteroid mass uncertainty as a function of camera IFOV.
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Fig. 16 Asteroidmass uncertainty as a function of probe range precision.
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Fig. 17 Asteroid mass uncertainty as a function of probe Doppler
precision.
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Fig. 18 Asteroidmass uncertainty as a function of observation cadence.

Table 6 Asteroid mass uncertainty with stochastic process noise.

Noise intensity, km∕s2 OpGrav, % OpDoppler, % OpRange, %

10−14 14.0 1.0 3.7

10−13 16.3 3.2 3.7

10−12 16.5 14.2 3.7

10−11 16.7 111.7 3.7
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and modeling to keep the process noise to a minimum. With such
measures, achieving a noise level of10−13 km∕s2 is possible; however,
10−12 km∕s2 is probably amore realistic level formost spacecraft [16].
For higher noise intensities, theOpRangemethod is a better choice

with its more consistent performance. The OpGrav method is also
capable of producing decent results in the presence of process noise,
but with significantly higher uncertainty than the OpRange method.
As before, these results have been validated using Monte Carlo

simulations, which showed no meaningful differences to the dis-
played data. For example, for a noise intensity of 10−14 km∕s2 the
simulations resulted in standard deviations of 14.9, 1.3, and 3.3% for
OpGrav, OpDoppler, andOpRange, respectively, with corresponding
means of 1.5, 0.0, and 0.0%. Note that the state estimation was split
into 12 h batches to accommodate the timevarying nature ofns for the
Monte Carlo runs. Furthermore, the addition of probe deployment
errors and stochastic acceleration will, in a real-world scenario, cause
the geometry of the asteroid encounter and hence themass estimation
precision to change; however, such effects have been artificially
removed to provide amore direct comparison between the covariance
analysis and Monte Carlo methods.

VI. Discussion

To actually carry out a mission similar to the one described in
Sec. II, there are a number of practical elements to consider.
Even though it in principle is not necessary to know the precise

position of the asteroid to achieve good estimation performance,
accurate knowledge is needed in order to determine the ejection time
and angle which ensures optimal flyby conditions, as there otherwise
is a risk that the probeswill either collidewith the asteroid or be too far
away from it to enable precise mass estimation. The asteroid state
estimate can potentially be improved by tracking it from the spacecraft
before the flyby; however, process noise and ejection errors present
similar issues and can severely affect the geometry of the encounter.
One possibleway to mitigate these issues is to eject several additional
probes into a larger angular area that covers the uncertainty space, thus
allowing some probes to collide with the target and some to be so far
away as to not be deflected at all. This would speak for the use of the
OpGrav method as it would be trivial to extend it to use more probes
given the simple construction it allows for.However, such an approach
would likely require a larger area to be imaged by either changing
the mission parameters or adding additional cameras. Decreasing
the focal length of the camera or increasing the asteroid–spacecraft
distance would result in the camera covering a larger area around
the asteroid (potentially at the expense of achieving the required
spatial resolution on the target body) but also an increase in σμa ,
whereas adding additional cameras would increase the overall com-
plexity of the mission. Additionally, if the probes cover too large
an area, it cannot be reasonably assumed that unmodeled forces will
affect them equally. Associated with adding more probes is also an
increase in themass and volumeof the spacecraft, but this effect can be
reduced by changing the size of each individual probe.
Another aspect that should be considered is that forces caused by

the presence of potential fields or dust and gas around the asteroid (or
comet) would result in the assumption of disturbances affecting all
the probes evenly to not be valid. Such forces would therefore likely
have to be modeled and included in the state estimation before the
mass of a small body with those features can be accurately deter-
mined. Alternatively, it may be possible to lessen the impact of such
disturbances by using different probe formations; however, this is
likely to affect the general behavior of the mass estimation process.
At the end of the mission, the probes have an apparent brightness

equivalent to a magnitude 7–8 star, assuming a 45 deg phase angle,
and it should therefore not be an issue to detect them with the APIC
narrow angle camera; however, this is subject to change if probe size is
reduced or a different camera sensitivity is assumed. Currently, the
probes reach thediffraction limit of the telescopeapproximately2days
after ejection and will appear as point sources for the vast majority of
the mission, which is why the 0.5 pixel should be a realistic, albeit
somewhat conservative [31], estimate for the attainable probe tracking
precision. The asteroid will similarly have angular extents below the

diffraction limit for the duration of themission except for at the closest
approach where it briefly will reach a diameter of approximately
400 pixels. During this critical time, it may be possible to achieve
better tracking precision in theory; however, the large relative speed is
likely to cause motion blur, which means that a reduction is precision
is more likely. Again, 0.5 pixel should be a fair estimate of the average
precision.
The value of 0.03 μm∕s used for the OpDoppler measurement

precision is based on the accuracy achieved by the GRAIL mission
[32], which inherently means that such results are possible. However,
achieving that level of precision requires advanced andextremelywell-
calibrated equipment and therefore represents a significant increase
in complexity compared to the OpGrav scenario, especially if more
than one probe has to be used in order to mitigate the process noise
sensitivity. Fitting the required hardware into the probe form factorwill
be especially challenging, and further studies will be required to
determine the feasibility.
It may seem somewhat inconsistent to use highly precise Doppler

measurements but only modest camera precision in the covariance
analysis. Initially, lower accuracy was used for the OpDoppler case,
but this proved ineffective when faced with stochastic accelerations,
and the precisionwas therefore improved to the current level. Because
all three methods rely on camera data, decreasing the IFOVaffects all
of them to a similar extent. As such, the relative performance between
the different methods remain approximately the same, even when the
IFOV is improved significantly. The conclusions of the analysis
should therefore remain valid despite this discrepancy in precision.
Achieving the 1 m range precision used in the OpRange method

requires a timing precision of approximately 3 ns, which should be
possible on hardware small enough to be housed inside of the probes
[33]. However, for the radio beacons to adhere to the simple linear
model used to describe oscillator offset, precise temperature control
will benecessary. The probeswill alsoneed somesort of internal power
source, as any external surface features, such as solar panels,will cause
the assumption ofnp being a constant to be unrealistic. Batteries small
enough to fit inside the envelope of the probes should be capable of
providing sufficient power for the duration of the mission, but in
general, the internal probe design will require further study.

VII. Conclusions

Three different asteroid mass estimation methods have been ana-
lyzed, all based on the concept of ejecting probes from a spacecraft
performing a flyby and then tracking these probes as they pass close
by the asteroid. The results have been achieved using a square root
information filter based covariance analysis and verified usingMonte
Carlo simulations. For aBennu-like asteroid, it has been found that its
mass can be determined with a precision better than 20% using only
visual tracking and better than 5% by also using radiometic mea-
surements.
Using Doppler measurements allows for the highest accuracy

and only requires a single probe, but it is sensitive to process noise
and therefore requires low levels of stochastic acceleration in order
to produce good results. It is also the most complicated method to
implement on account of the advanced hardware needed to reach a
similar precision to the GRAIL mission.
Measuring the ranges between the spacecraft and the probes as

well as the ranges between the probes themselves is in general less
sensitive to variations in mission parameters and process noise, but it
is slightly less accurate than the Doppler based approach.
In general, the idea of using ejected probes to estimate asteroid

masses is a promising concept that can significantly increase the science
value of an asteroid flyby mission without adding much complexity.
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